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ABSTRACT

The natural inversion method of backscattered surface
waves is studied in this project. I give the conju-
gate gradient (CG) algorithm and compare its com-
putational workload with that of the inverse of Hessian
method. The CG algorithm needs much more compu-
tational workload than the inverse of Hessian method.
Then, I show the polarity change in my implement of
natural migration, and give the polarity analysis from
the migration equation. The results of analysis demon-
strates the polarity of final image changes when the
source-receiver pair is at different side of a fault. But
it still needs more works to study the polarity of the
natural migration of surface waves.

INTRODUCTION

The scattered surface wave generated by strong hetero-
geneity of shallow subsurface is often seen as noise in seis-
mic reflection exploration (Blonk et al., 1995; Ernst et al.,
2002). Actually, we can use the backscattered surface
wave to image the near-surface heterogeneity (Snieder,
1986; Riyanti, 2005; Yu et al., 2014).

The relations between model perturbationm and backscat-
tered surface waves d can be linearized by Born approxi-
mation d = Lm, where L is the forward modeling opera-
tor (Snieder, 1986; Tanimoto, 1990). To get the model
perturbation m, Riyanti (2005) used an iterative opti-
mization method to approximate the solution, and Snieder
(1986) and Yu et al. (2014) applied the adjoint of the for-
ward modeling operator L† to backscattered data to ob-
tain the migration image.

Recently, AlTheyab et al. (2015c) introduced the natu-
ral migration (NM) method to image the near-surface het-
erogeneity. Compared to the methods introduced above,

there are two main advantages of NM method. One is
that the NM method does not base on the Born approx-
imation and estimates the Green’s function at the geo-
phone instead of calculating the Green’s function based on
an assumed background model. Another is that the NM
method can be implemented without a velocity model.
AlTheyab et al. (2015c) has shown the image of USArray
and Long Beach passive data by using the NM method.
The NM seems to migrate some artifacts due to record-

ing geometry and bad illumination (AlTheyab et al., 2015a).
AlTheyab et al. (2015b) has applied the inverse of Hessian
method to do natural inversion. This project tries to use
the conjugate gradient (CG) method to solve this problem
and compare its result with the inverse of Hessian method.
In the following section, I begin by overview of the the-

ory of two least-square implement methods, CG method
and the inverse of Hessian method. Then, I will show the
polarity change that exists in my implement by a one-fault
model. Finally, I will analyze the polarity of image from
the migration equation.

LEAST SQUARE NATURAL MIGRATION

The natural migration equation can be expressed as (Al-
Theyab et al., 2015b),

m = L†d (1)

where m is the perturbation model; L is the forward-
modeling operator, and d is the vector containing the
scattered events.
In this section, we try to see this migration problem as

an inversion problem, and analyze two implements.

The conjugate gradient method

To obtain the perturbation model m, I turn to the CG
method to solve the system of linear equations Lm = d
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instead of just applying the migration equation 7. The
CG algorithm is shown in algorithm 1. For each iteration,
it needs two modeling (line 5 and line 8 in algorithm 1)
and one migration (line 14).

Algorithm 1 The Conjugate Gradient Algorithm

1: initial m0 = 0;
2: g1 ← LTd;
3: p1 ← −g1;
4: for each i in [1,MaxIterationNo] do
5: res = Lpi;
6: αi ← −(gT

i pi)/(res
T res);

7: mi+1 ←mi + αipi;
8: datai+1 = Lmi+1;
9: datares = datai+1 − dataobs;

10: if datares < δ then
11: break;
12: end if
13: mute the transmitted wave for datares;
14: gi+1 ← LTdatares;
15: if mod(i,N) == 0 then
16: βi ← 0;//reset the direction to the steepest de-

scent direction
17: else
18: βi ← (gT

i+1gi+1)/(g
T
i gi); //Fletcher-Reeves CG

method
19: end if
20: pi+1 ← −gi+1 + βipi

21: end for

The inverse of Hessian method

To implement the least-squares solution, another method
is to apply the inverse of Hessian to the migration equation
7, m = H−1L†d, where the Hessian matrix is defined as
H = L†L.

L(g|x′|s) can be expressed as 2ω2W (ω)G(g|x′)G(x′|s),
where, g and s represent the position of geophone and
source; x′ represent the position of model point; ω is the
angular frequency; G is the Green’s function. So, the
Hessian can be expressed as,

H(x|x′) =
∑
s,g,ω

4ω4A(ω)G(g|x)∗G(x|s)∗G(g|x′)G(x′|s)

(2)
where A = W ∗(ω)W (ω). Each column of Hessian can
be seen as the point-scatterer response in the migration
image, and x′ in equation 2 is the point-scatterer position.

The inverse of Hessian can be approximated by Singular
Value Decomposition (SVD) method,

H
def
= UWV† (3)

H−1 ≈ VSU† (4)

where U and V are unitary matrices; W is a rectangular
matrix with singular values at diagonal entries; S is the
pseudo-inverse of matrix W.

From the equation 2, we can see that it needs only one
migration to calculate the Hessian, which means it is much
cheaper than the iterative CG method.

POLARITY PROBLEM IN MY IMPLEMENT

In this section, I will use a one-fault model to show the
polarity change in my implement, and then try to analyze
this problem in theory.

A one-fault model

The one -fault model we used is shown in figure 1. The
P-wave velocity is 1000 m/s on the left side and 1400 m/s
on the right side. The S-wave velocity is calculated by
Vs = Vp/

√
3. The density is constant with the value of 2.0

km/m3. The fault is located at x= 122 m with the depth
of 0 m. There are totally 301 sources and receivers on the
surface with the spacing of 1 m. I used the 2D staggered-
grid finite-difference forward modeling of isotropic elastic
wave-equation (Virieux, 1986) with a free-surface bound-
ary condition (Gottschämmer and Olsen, 2001) to gener-
ate the Rayleigh wave.
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Figure 1: The shear velocity for a one-fault model, where
the fault is located at x = 122 m.

Figure 2 shows the NM image for each shot, where the
red dash line shows the position of fault; the stars show the
position of each shot; the black arrow shows the polarity
change when the source is at different sides of the fault.

Polarity analysis from the migration equa-
tion

I will try to think about this problem from the migration
equation 7. The expression of the kernel is,

L(g|x′|s)† = 2ω2W ∗(ω)G(g|x′)∗G(x′|s)∗ (5)

The data we obtain can be expressed as the convolution
between the source wavelet and the Green’s function,

d(g|s) = W (ω)G(g|s) (6)



Least Squares Natural Migration 3

Shot Number

50 100 150 200 250 300

X
(m

)

50

100

150

200

250

300 -1

-0.5

0

0.5

1

Figure 2: The NM image for each shot, where the red
dash line shows the position of fault; the stars show the
position of each shot; the black arrow shows the polarity
change when the source is at different sides of the fault
(the red ellipses show the image of the boundary due to
the lack of visible backscattered waves near the source).

Then we can do migration by the following migration
equation,

m(x′) = L(g|x′|s)†d(g|s)

=
∑
s,g,ω

2ω2W ∗(ω)G(g|x′)∗G(x′|s)∗W (ω)G(g|s)

=
∑
s,g,ω

2ω2A(ω)G(g|x′)∗G(x′|s)∗G(g|s) (7)

where A = W ∗(ω)W (ω).

Two-side situation

Now we use a fault model in figure 3 to show the imple-
ment of migration. For the left source-receiver pair (the
source and receiver are at the same position), we can cal-
culate its migration image,

ml(x
′) =

∑
ω

2ω2A(ω)Gl(gl|x′)∗Gl(x
′|sl)∗Gl(gl|sl) (8)

Then, by using the same wavelet, we can obtain the mi-
gration image for the right source-receiver pair,

mr(x
′) =

∑
ω

2ω2A(ω)Gr(gr|x′)∗Gr(x
′|sr)∗Gr(gr|sr)

(9)

By comparison of equation (8) and (9), I claim that if
the distances between the fault and source-receiver for
both sides are set appropriately, the Green’s functions
Gl(gl|x′)(= Gl(x

′|sl)) andGr(gr|x′) (= Gr(x
′|sr)) should

be the same without the consideration of geometry spread-
ing ( this is the assumption for the following discussion).
How about the remaining Green’s function term? Obvi-

ously, there are two option, the same or reverse and I claim
that they should be reverse, Gl(gl|sl) = −Gr(gr|sr). So,
the image should be reverse, ml(x

′) = −mr(x
′).

Figure 3: The schematic diagram that shows the source-
receiver pairs at two sides of a fault.

One-side situation with velocity reverse

Now we are going to consider one-side situation shown in
figure (4) but the velocity is reverse compared to that in
figure (3). The migration image can be expressed as,

m′
l(x

′) =
∑
ω

2ω2A(ω)G′
l(g

′
l|x′)∗G′

l(x
′|s′l)∗G′

l(g
′
l|s′l) (10)

By comparison between equation (8) and (10), I claim
that if the distances between the fault and source-receiver
at one side but with velocity reverse are set appropriately,
the Green’s functions Gl(gl|x′)(= Gl(x

′|sl)) and G′
l(g

′
l|x′)

(= G′
l(x

′|s′l)) should be the same. How about the remain-
ing Green’s function term? I also claim that they should
be reverse, Gl(gl|sl) = −G′

l(g
′
l|s′l). So, the image should

be reverse, ml(x
′) = −m′

l(x
′).

Figure 4: The schematic diagram that shows the source-
receiver pair at one side of a fault with the velocity reverse
compared to figure (3).

DISCUSSION

From the polarity analysis, it seems that the polarity
should change when the source is at different sides of a
fault. Actually, we can see the polarity change in the
backscattered waves when source is at different sides of
the fault (shown in figure 5), which leads to the polarity
changes at the final image (shown in figure 6).
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Figure 5: The backscattered records of two different
source-receiver pairs by the model in figure 1: the location
of source-receiver pair for the top one is on the left of the
fault, and the location of the down one is on the right.
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Figure 6: The NM images in my implement corresponding
to the source-receiver pairs in figure 5, where red dash
lines show the position of fault.


